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1 
Structures of fundamental organic peroxides such as 1,2,4-trioxolanes , 

peracetic acid2, and dioxirane3 have been well established by microwave spectros- 

copy. 3,6-Dihydro-1,2-dioxins (1,4-endoperoxides) are also fascinating peroxides 

which are easily obtained by the reaction of 1,3-dienes with singlet oxygen' and 

are utilized as versatile intermediates in organic syntheses. 
5 

No data, however, 

are available concerning the molecular structure and the conformational isomeriza, 

tion of the simplest 1,4_endoperoxide. We have established the conformation of 

the 3,6-dihydro-1,2-dioxin (1) by means of microwave and nmr spectroscopy. 

The peroxide 1 was prepared by a photosensitized oxygenation of 1,3- 

butadiene. 
6 A solution of 1,3-butadiene and Rose Bengal (sensitizer) in tetra- 

ethyleneglycol dimethyl ether was irradiated with a 500-W halogen lamp for 15 h 

at O°C under an oxygen atmosphere. The peroxide 1 was obtained as a colorless - 
liquid (bp 108'C) in a yield of 20%. 
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The microwave spectrum was observed with a conventional IlO-kHz Stark- 

modulated spectrometer. The measurement was carried out at dry-ice temperature, 

unless otherwise indicated. We observed b-type Q-branch transitions of low J, 

and the values of (A - C)/2 and K were determined by the use of a Q-branch plot7. 

The value of (A + C)/2 was obtained by the observation of R-branch lines of low 

J. The assignment of spectral lines was confirmed by the characteristic Stark 

patterns, as well as by the agreement with the frequencies calculated for a hali- 

chair model using suitable values of molecular parameters. The half-chair 

conformation is attributed to this molecule by substantial evidence described 

below. The b-type transitions with J less than 8 were observed in the frequency 

range from 8 to 26 GHz but no a- and c-type transitions were detected. Table I 

lists the rotational constants determined by a least-squares fit to the 

frequencies of transitions with J less than 4, together with the dipole moment 

obtained by Stark effect measurements on the several low-J transitions. 
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Table I. Rotational Constantsa)(MHz) and Dipole Momenta) (D) 

of 3,6-Dihydro-1,2-dioxin 

A B C 

5287.43 + 0.16 5110.21 + 0.16 2857.85 f 0.08 

'total = 'b = 2.329 f 0.003 

a) Errors are 2.5 times the standard deviations. 

The correct conformation of 1 was first indicated by the observation of - 

alternation in the intensities of transitions from rotational levels of opposite 

symmetry. This alternation in intensity arises in 1 only if a C2 rotational - 

symmetry axis is present in the molecule: therefore, the molecule cannot have a 

boat conformation which belongs to the Cs symmetry. The observed ratio of the 

intensity of 423 - 414 (antisymmetric transition: u. = 16369.5 MHz, Xb = 0.9404) 

to that of 413 - 404 (symmetric transition: v. = 16367.0 MHz, Xb = 0.9405) was 

1.30 f 0.10 , if all other intensity factors of both transitions were considered 

to be the same. It is consistent with the ratio 9/7 which is expected for a 

molecule with three pairs of equivalent hydrogen nuclei with nuclear spin of l/2. 

This result supports the half-chair model and puts the boat conformation out of 

consideration. 

Kinetic parameters for the conformational isomerization of 1 were determined - 
by the use of nmr spectroscopy. The high resolution nmr spectra of about 10% 

solution of 1 in CD2C12 were recorded on Varian Model XL-100A spectrometer in the _ 

temperature range from 25 to -100 OC. Because of the presence of a proton 

coupling, the resonance lines of the gem-hydrogen of methylene groups are 

particularly complicated. At room temperature they appear as a single sharp line 

(6 4.56) which broadens as the temperature is lowered until -69.4'C where the 

coalescence temperature is reached. Below the coalescence temperature the 

spectrum exhibits resolution first into a diffuse doublet and finally (-96'C) 

into a distinct quartet of a coupled AB system. The exchange rate was calculated 

from a computer-assisted simulation by a complete line-shape method using the 

density matrix equations in the form given for a coupled AB case. 8 The spin-spin 

coupling constant and the chemical shift between the methylene protons in the nmr 

spectra of 1 in CD2C12 at -96OC are 16.0 and 56.0 Hz, respectively. The trans- 

verse relaxation time is determined by the linewidth of the sharp single line in 

the spectrum measured at room temperature CT2 = 0.14 s). An Arrhenius plot of 

the rate constants thus obtained permitted the determination of activation energy 

by a least-squares fit, and the Eyring formulation was used to calculate the 

thermodynamic parameters for the transition state. The results are compared with 

those for 3,3,5-trimethyl-3,6-dihydro-1,2-dioxin' (2) in Table II. The opposite 

signs in the entropy of activation clearly show that the conformational isomeriza- 

tion of 1 follows a reaction pathway different from that proposed for 2 9 -- The 

negative entropy of activation obtained for 1 suggests that the activated complex - 
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Table II. Transition State Parameters for Half-Chair Inversion of 

3,6-Dihydro-1,2-dioxin and 3,3,5-Trimethyl-3,6-dihydro-1,2_dioxin 

K kcal/mol 

Tc 
a) b) 1ogA Ea c)AG+ d)AH+ cc cc 

e)Aiy f) 
cc Ref. 

------ 
3,6-Dihydro-1,2-dioxin 203.8 11.9 9.0 9.7 8.6 -5.4 z 

3,3,5-Trimethyl-3,6-dihydro-1,2_dioxin 214.7 13.0 11.0 12.6 7.4 9 

a) coalescence temperature b) A: frequency factor c) activation energy 
d) obtained from the rate constant at Tc e) obtained from the equation of 

AHtc = Ea - RTc f) obtained from the equation of AS:, = (AHEc - AGkc)/Tc 

possesses a greater degree of order (a rigid, planar or near-planar form) than 

the starting half-chair form. 

The rotational constants shown in Table I resulted in the C-C=C, C-C-O, and 

twist angles to be 119.9, 110.3, 38.3°,respectively, on the assumption that the 

C=C, C-C, C-O, C-H (olefinic), and C-H (methylene) bond distances were to be 

1.338, 1.504, 1.426, 1.09, and 1.10 i, respectively. Following plausible 

assumptions were also introduced in this calculation: (1) the four carbon atoms 

are in a plane, (2) the olefinic hydrogen atom lies on the bisector of the 

adjacent ring angle C-C=C, (3) H-C-H angle is equal to the tetrahedral angle 

109“28', sharing a common bisector with the adjacent ring angle C-C-O, (4) all 

C-C-H angles associated with methylene groups are equal. The C-C=C angle thus 

obtained is found to be narrower than those in cyclohexene (123.3°)10, and 3,6- 

dihydro-2H-pyran (122.2')ll. It may be resulted in by the fact that the O-O 

distance 1.463 i is shorter than a normal C-C distance in six-membered ring 

molecules containing a C=C ring bond. The twist angle between the O-O bond and 

the plane involving the four carbon atoms is larger than in cyclohexene (30.1°)10 

and 3,6-dihydro-2H-pyran (31.5O)ll. The details of the structural analysis will 

be reported elsewhere. 

The absorption intensity of the transitions of 1 was found to decrease - 
gradually at room temperature and, at the same time, new spectral lines appeared. 

The latter lines were assigned to the transitions of furan 12,13 and s-trans- 

acrolein14'15. 
-- 

In the case of the decomposition of 1 to acrolein (propenal), - 
formaldehyde would be formed. However, no spectral lines of formaldehyde 16 could 

be observed in the spectrum, nor those of 1,3,5-trioxane 17 , a trimer of form- 

aldehyde. The amounts of furan and acrolein thus formed were estimated from the 

relative intensities of the respective absorption lines using their calculated 
18 maximum absorption coefficients . Furan was found to be formed 50-100 times as 

much as acrolein. Thus the peroxide 1 selectively decomposes into furan. - 
The peroxide 1 was found to have the lifetime of 15 min under the pressure - 

of 20 mTorr in a red-brass waveguide cell at room temperature, whereas it is 

scarcely changed in a Pyrex tube at room temperature after a week. 19 The 

decomposition in the waveguide cell can be considered to be not a homogeneous 

thermal reaction but a heterogeneous catalytic reaction. We found that cuprous 
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chloride is more effective than metallic copper and cupric oxide to convert 1 
20 

- 

selectively into furan in gas phase. 
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